TfIdfVectorizer:具有固定vocab的矢量化器如何处理新单词?


问题内容

我正在研究约10万篇研究论文。我正在考虑三个领域:

  1. 纯文本
  2. 标题
  3. 抽象

我使用TfIdfVectorizer来获取纯文本字段的TfIdf表示形式,并将由此产生的vocab反馈回title和abstract的Vectorizer中,以确保所有三种表示都在同一个vocab上工作。我的想法是,由于纯文本字段比其他两个字段大得多,因此它的词汇表很可能会覆盖其他字段中的所有单词。但是,如果不是这种情况,TfIdfVectorizer将如何处理新单词/标记?

这是我的代码示例:

vectorizer = TfidfVectorizer(min_df=2)
plaintexts_tfidf = vectorizer.fit_transform(plaintexts)
vocab = vectorizer.vocabulary_
# later in an another script after loading the vocab from disk
vectorizer = TfidfVectorizer(min_df=2, vocabulary=vocab)
titles_tfidf = vectorizer.fit_transform(titles)

词汇约有90万个字。

在矢量化期间,我没有遇到任何问题,但是后来当我想使用sklearn.metrics.pairwise.cosine_similarity比较矢量化标题之间的相似性时,我遇到了这个错误:

>> titles_sim = cosine_similarity(titles_tfidf)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-237-5aa86fe892da> in <module>()
----> 1 titles_sim = cosine_similarity(titles)

/usr/local/lib/python3.5/dist-packages/sklearn/metrics/pairwise.py in cosine_similarity(X, Y, dense_output)
    916         Y_normalized = normalize(Y, copy=True)
    917 
--> 918     K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output)
    919 
    920     return K

/usr/local/lib/python3.5/dist-packages/sklearn/utils/extmath.py in safe_sparse_dot(a, b, dense_output)
    184         ret = a * b
    185         if dense_output and hasattr(ret, "toarray"):
--> 186             ret = ret.toarray()
    187         return ret
    188     else:

/usr/local/lib/python3.5/dist-packages/scipy/sparse/compressed.py in toarray(self, order, out)
    918     def toarray(self, order=None, out=None):
    919         """See the docstring for `spmatrix.toarray`."""
--> 920         return self.tocoo(copy=False).toarray(order=order, out=out)
    921 
    922     ##############################################################

/usr/local/lib/python3.5/dist-packages/scipy/sparse/coo.py in toarray(self, order, out)
    256         M,N = self.shape
    257         coo_todense(M, N, self.nnz, self.row, self.col, self.data,
--> 258                     B.ravel('A'), fortran)
    259         return B
    260

ValueError: could not convert integer scalar

我不太确定是否相关,但是我真的看不到这里出了什么问题。同样是因为在计算明文矢量的相似度时我没有遇到错误。

我错过了什么吗?有没有更好的方法使用Vectorizer?

编辑:

稀疏csr_matrices的形状相等。

>> titles_tfidf.shape
(96582, 852885)
>> plaintexts_tfidf.shape
(96582, 852885)

问题答案:

恐怕矩阵可能太大。这将是96582 * 96582 = 9328082724个单元格。尝试稍微切片titles_tfidf并检查。

资料来源:http : //scipy-
user.10969.n7.nabble.com/SciPy-User-strange-error-when-creating-csr-matrix-
td20129.html

EDT:如果您使用的是较旧的SciPy /
Numpy版本,则可能需要更新:https :
//github.com/scipy/scipy/pull/4678

EDT2:同样,如果您使用的是32位python,则切换到64位可能会有所帮助(我想)

EDT3:回答您的原始问题。当您从中使用词汇时plaintexts,将会有新词titles被忽略-
但不会影响tfidf值。希望此片段可以使其更易于理解:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

plaintexts =["They are", "plain texts texts amoersand here"]
titles = ["And here", "titles ", "wolf dog eagle", "But here plain"]

vectorizer = TfidfVectorizer()
plaintexts_tfidf = vectorizer.fit_transform(plaintexts)
vocab = vectorizer.vocabulary_
vectorizer = TfidfVectorizer(vocabulary=vocab)
titles_tfidf = vectorizer.fit_transform(titles)
print('values using vocabulary')
print(titles_tfidf)
print(vectorizer.get_feature_names())
print('Brand new vectorizer')
vectorizer = TfidfVectorizer()
titles_tfidf = vectorizer.fit_transform(titles)
print(titles_tfidf)
print(vectorizer.get_feature_names())

结果是:

values using vocabulary
  (0, 2)        1.0
  (3, 3)        0.78528827571
  (3, 2)        0.61913029649
['amoersand', 'are', 'here', 'plain', 'texts', 'they']
Brand new vectorizer
  (0, 0)        0.78528827571
  (0, 4)        0.61913029649
  (1, 6)        1.0
  (2, 7)        0.57735026919
  (2, 2)        0.57735026919
  (2, 3)        0.57735026919
  (3, 4)        0.486934264074
  (3, 1)        0.617614370976
  (3, 5)        0.617614370976
['and', 'but', 'dog', 'eagle', 'here', 'plain', 'titles', 'wolf']

请注意,这 我从标题中删除明文中未出现的单词不同。