熊猫:groupby和可变权重
问题内容:
我有一个包含每个观察值的权重的数据集,我想使用来准备加权汇总,groupby
但是对于如何最好地做到这一点却感到生疏。我认为这意味着自定义聚合功能。我的问题是如何正确处理不是逐项数据,而是逐组数据。也许这意味着最好是分步骤进行,而不是一劳永逸。
用伪代码,我正在寻找
#first, calculate weighted value
for each row:
weighted jobs = weight * jobs
#then, for each city, sum these weights and divide by the count (sum of weights)
for each city:
sum(weighted jobs)/sum(weight)
我不确定如何将“针对每个城市”的部分工作到自定义的汇总函数中,以及如何访问组级别的摘要。
模拟数据:
import pandas as pd
import numpy as np
np.random.seed(43)
## prep mock data
N = 100
industry = ['utilities','sales','real estate','finance']
city = ['sf','san mateo','oakland']
weight = np.random.randint(low=5,high=40,size=N)
jobs = np.random.randint(low=1,high=20,size=N)
ind = np.random.choice(industry, N)
cty = np.random.choice(city, N)
df_city =pd.DataFrame({'industry':ind,'city':cty,'weight':weight,'jobs':jobs})
问题答案:
只需将两列相乘:
In [11]: df_city['weighted_jobs'] = df_city['weight'] * df_city['jobs']
现在您可以按城市分组(并取总和):
In [12]: df_city_sums = df_city.groupby('city').sum()
In [13]: df_city_sums
Out[13]:
jobs weight weighted_jobs
city
oakland 362 690 7958
san mateo 367 1017 9026
sf 253 638 6209
[3 rows x 3 columns]
现在,您可以将两个和除,以获得所需的结果:
In [14]: df_city_sums['weighted_jobs'] / df_city_sums['jobs']
Out[14]:
city
oakland 21.983425
san mateo 24.594005
sf 24.541502
dtype: float64