以管道作为估计器的VotingClassifier


问题内容

我想VotingClassifier从多个不同的模型(决策树,SVC和Keras网络)构建sklearn集成。它们都需要不同类型的数据预处理,这就是为什么我为它们每个创建了管道。

# Define pipelines

# DTC pipeline
featuriser = Featuriser()
dtc = DecisionTreeClassifier()
dtc_pipe = Pipeline([('featuriser',featuriser),('dtc',dtc)])

# SVC pipeline
scaler = TimeSeriesScalerMeanVariance(kind='constant')
flattener = Flattener()
svc = SVC(C = 100, gamma = 0.001, kernel='rbf')
svc_pipe = Pipeline([('scaler', scaler),('flattener', flattener), ('svc', svc)])

# Keras pipeline
cnn = KerasClassifier(build_fn=get_model())
cnn_pipe = Pipeline([('scaler',scaler),('cnn',cnn)])

# Make an ensemble
ensemble = VotingClassifier(estimators=[('dtc', dtc_pipe), 
                                        ('svc', svc_pipe),
                                        ('cnn', cnn_pipe)], 
                            voting='hard')

FeaturiserTimeSeriesScalerMeanVarianceFlattener类是一些定制变压器,所有雇用fittransformfit_transform方法。

当我尝试ensemble.fit(X, y)拟合整个集合时,我收到错误消息:

ValueError:估计器列表应为分类器。

我能理解,因为各个估算器不是专门的分类器,而是管道。有没有办法让它继续工作?


问题答案:

问题出在KerasClassifier。它不提供_estimator_type已签入的_validate_estimator

这不是使用管道的问题。管道将此信息作为属性提供。看这里

因此,快速修复方法是设置_estimator_type='classifier'

一个可重现的示例:

# Define pipelines
from sklearn.pipeline import Pipeline
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import MinMaxScaler, Normalizer
from sklearn.ensemble import VotingClassifier
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.datasets import make_classification
from keras.layers import Dense
from keras.models import Sequential

X, y = make_classification()

# DTC pipeline
featuriser = MinMaxScaler()
dtc = DecisionTreeClassifier()
dtc_pipe = Pipeline([('featuriser', featuriser), ('dtc', dtc)])

# SVC pipeline
scaler = Normalizer()
svc = SVC(C=100, gamma=0.001, kernel='rbf')
svc_pipe = Pipeline(
    [('scaler', scaler), ('svc', svc)])

# Keras pipeline
def get_model():
    # create model
    model = Sequential()
    model.add(Dense(10, input_dim=20, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    # Compile model
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model


cnn = KerasClassifier(build_fn=get_model)
cnn._estimator_type = "classifier"
cnn_pipe = Pipeline([('scaler', scaler), ('cnn', cnn)])


# Make an ensemble
ensemble = VotingClassifier(estimators=[('dtc', dtc_pipe), 
                                        ('svc', svc_pipe),
                                        ('cnn', cnn_pipe)], 
                            voting='hard')

ensemble.fit(X, y)