Python:基于交集的简单列表合并
问题内容:
考虑一下一些整数列表:
#--------------------------------------
0 [0,1,3]
1 [1,0,3,4,5,10,...]
2 [2,8]
3 [3,1,0,...]
...
n []
#--------------------------------------
问题是合并具有至少一个公共元素的列表。因此,仅给定部分的结果如下:
#--------------------------------------
0 [0,1,3,4,5,10,...]
2 [2,8]
#--------------------------------------
对大数据(元素只是数字)执行此操作的最有效方法是什么?
是否tree
需要考虑结构?现在,我通过将列表转换sets
为交叉点并对其进行迭代来完成这项工作,但这很慢!而且我有一种非常基本的感觉!此外,该实现缺少某些内容(未知),因为某些列表有时仍未合并!话虽如此,如果您提议自我实现,请大方并提供一个简单的示例代码[显然,
Python 是我最喜欢的:)]或伪代码。
更新1: 这是我使用的代码:
#--------------------------------------
lsts = [[0,1,3],
[1,0,3,4,5,10,11],
[2,8],
[3,1,0,16]];
#--------------------------------------
该函数是( 越野车!! ):
#--------------------------------------
def merge(lsts):
sts = [set(l) for l in lsts]
i = 0
while i < len(sts):
j = i+1
while j < len(sts):
if len(sts[i].intersection(sts[j])) > 0:
sts[i] = sts[i].union(sts[j])
sts.pop(j)
else: j += 1 #---corrected
i += 1
lst = [list(s) for s in sts]
return lst
#--------------------------------------
结果是:
#--------------------------------------
>>> merge(lsts)
>>> [0, 1, 3, 4, 5, 10, 11, 16], [8, 2]]
#--------------------------------------
更新2: 以我的经验,下面的 Niklas Baumstark
给出的代码对于简单的情况显示更快一些。尚未测试“挂钩”给出的方法,因为它是完全不同的方法(看起来很有趣)。所有这些的测试过程可能很难或无法保证结果。我将使用的真实数据集是如此之大和复杂,因此仅通过重复就不可能跟踪任何错误。也就是说,我需要100%满足该方法的可靠性,然后才能将其推入模块中的大型代码中。就目前而言,
Niklas 的方法速度更快,简单设置的答案当然是正确的。
但是,如何确定它对于真正的大数据集是否有效? 由于我将无法直观地跟踪错误!
更新3: 请注意,此方法的可靠性比速度重要得多。希望我最终能够将Python代码转换为Fortran,以实现最佳性能。
更新4:
这篇文章中有很多有趣的观点,并慷慨地给出了答案和建设性的意见。我建议您仔细阅读所有内容。请接受我对问题的发展,令人惊奇的答案以及建设性的评论和讨论的赞赏。
问题答案:
我的尝试:
def merge(lsts):
sets = [set(lst) for lst in lsts if lst]
merged = True
while merged:
merged = False
results = []
while sets:
common, rest = sets[0], sets[1:]
sets = []
for x in rest:
if x.isdisjoint(common):
sets.append(x)
else:
merged = True
common |= x
results.append(common)
sets = results
return sets
lst = [[65, 17, 5, 30, 79, 56, 48, 62],
[6, 97, 32, 93, 55, 14, 70, 32],
[75, 37, 83, 34, 9, 19, 14, 64],
[43, 71],
[],
[89, 49, 1, 30, 28, 3, 63],
[35, 21, 68, 94, 57, 94, 9, 3],
[16],
[29, 9, 97, 43],
[17, 63, 24]]
print merge(lst)
基准测试:
import random
# adapt parameters to your own usage scenario
class_count = 50
class_size = 1000
list_count_per_class = 100
large_list_sizes = list(range(100, 1000))
small_list_sizes = list(range(0, 100))
large_list_probability = 0.5
if False: # change to true to generate the test data file (takes a while)
with open("/tmp/test.txt", "w") as f:
lists = []
classes = [
range(class_size * i, class_size * (i + 1)) for i in range(class_count)
]
for c in classes:
# distribute each class across ~300 lists
for i in xrange(list_count_per_class):
lst = []
if random.random() < large_list_probability:
size = random.choice(large_list_sizes)
else:
size = random.choice(small_list_sizes)
nums = set(c)
for j in xrange(size):
x = random.choice(list(nums))
lst.append(x)
nums.remove(x)
random.shuffle(lst)
lists.append(lst)
random.shuffle(lists)
for lst in lists:
f.write(" ".join(str(x) for x in lst) + "\n")
setup = """
# Niklas'
def merge_niklas(lsts):
sets = [set(lst) for lst in lsts if lst]
merged = 1
while merged:
merged = 0
results = []
while sets:
common, rest = sets[0], sets[1:]
sets = []
for x in rest:
if x.isdisjoint(common):
sets.append(x)
else:
merged = 1
common |= x
results.append(common)
sets = results
return sets
# Rik's
def merge_rik(data):
sets = (set(e) for e in data if e)
results = [next(sets)]
for e_set in sets:
to_update = []
for i, res in enumerate(results):
if not e_set.isdisjoint(res):
to_update.insert(0, i)
if not to_update:
results.append(e_set)
else:
last = results[to_update.pop(-1)]
for i in to_update:
last |= results[i]
del results[i]
last |= e_set
return results
# katrielalex's
def pairs(lst):
i = iter(lst)
first = prev = item = i.next()
for item in i:
yield prev, item
prev = item
yield item, first
import networkx
def merge_katrielalex(lsts):
g = networkx.Graph()
for lst in lsts:
for edge in pairs(lst):
g.add_edge(*edge)
return networkx.connected_components(g)
# agf's (optimized)
from collections import deque
def merge_agf_optimized(lists):
sets = deque(set(lst) for lst in lists if lst)
results = []
disjoint = 0
current = sets.pop()
while True:
merged = False
newsets = deque()
for _ in xrange(disjoint, len(sets)):
this = sets.pop()
if not current.isdisjoint(this):
current.update(this)
merged = True
disjoint = 0
else:
newsets.append(this)
disjoint += 1
if sets:
newsets.extendleft(sets)
if not merged:
results.append(current)
try:
current = newsets.pop()
except IndexError:
break
disjoint = 0
sets = newsets
return results
# agf's (simple)
def merge_agf_simple(lists):
newsets, sets = [set(lst) for lst in lists if lst], []
while len(sets) != len(newsets):
sets, newsets = newsets, []
for aset in sets:
for eachset in newsets:
if not aset.isdisjoint(eachset):
eachset.update(aset)
break
else:
newsets.append(aset)
return newsets
# alexis'
def merge_alexis(data):
bins = range(len(data)) # Initialize each bin[n] == n
nums = dict()
data = [set(m) for m in data] # Convert to sets
for r, row in enumerate(data):
for num in row:
if num not in nums:
# New number: tag it with a pointer to this row's bin
nums[num] = r
continue
else:
dest = locatebin(bins, nums[num])
if dest == r:
continue # already in the same bin
if dest > r:
dest, r = r, dest # always merge into the smallest bin
data[dest].update(data[r])
data[r] = None
# Update our indices to reflect the move
bins[r] = dest
r = dest
# Filter out the empty bins
have = [m for m in data if m]
return have
def locatebin(bins, n):
while bins[n] != n:
n = bins[n]
return n
lsts = []
size = 0
num = 0
max = 0
for line in open("/tmp/test.txt", "r"):
lst = [int(x) for x in line.split()]
size += len(lst)
if len(lst) > max:
max = len(lst)
num += 1
lsts.append(lst)
"""
setup += """
print "%i lists, {class_count} equally distributed classes, average size %i, max size %i" % (num, size/num, max)
""".format(class_count=class_count)
import timeit
print "niklas"
print timeit.timeit("merge_niklas(lsts)", setup=setup, number=3)
print "rik"
print timeit.timeit("merge_rik(lsts)", setup=setup, number=3)
print "katrielalex"
print timeit.timeit("merge_katrielalex(lsts)", setup=setup, number=3)
print "agf (1)"
print timeit.timeit("merge_agf_optimized(lsts)", setup=setup, number=3)
print "agf (2)"
print timeit.timeit("merge_agf_simple(lsts)", setup=setup, number=3)
print "alexis"
print timeit.timeit("merge_alexis(lsts)", setup=setup, number=3)
这些时间显然取决于基准测试的特定参数,例如类数,列表数,列表大小等。请根据需要调整这些参数以获得更有用的结果。
以下是我的机器上针对不同参数的一些示例输出。他们表明,所有算法都有其优势和劣势,具体取决于所获得的输入类型:
=====================
# many disjoint classes, large lists
class_count = 50
class_size = 1000
list_count_per_class = 100
large_list_sizes = list(range(100, 1000))
small_list_sizes = list(range(0, 100))
large_list_probability = 0.5
=====================
niklas
5000 lists, 50 equally distributed classes, average size 298, max size 999
4.80084705353
rik
5000 lists, 50 equally distributed classes, average size 298, max size 999
9.49251699448
katrielalex
5000 lists, 50 equally distributed classes, average size 298, max size 999
21.5317108631
agf (1)
5000 lists, 50 equally distributed classes, average size 298, max size 999
8.61671280861
agf (2)
5000 lists, 50 equally distributed classes, average size 298, max size 999
5.18117713928
=> alexis
=> 5000 lists, 50 equally distributed classes, average size 298, max size 999
=> 3.73504281044
===================
# less number of classes, large lists
class_count = 15
class_size = 1000
list_count_per_class = 300
large_list_sizes = list(range(100, 1000))
small_list_sizes = list(range(0, 100))
large_list_probability = 0.5
===================
niklas
4500 lists, 15 equally distributed classes, average size 296, max size 999
1.79993700981
rik
4500 lists, 15 equally distributed classes, average size 296, max size 999
2.58237695694
katrielalex
4500 lists, 15 equally distributed classes, average size 296, max size 999
19.5465381145
agf (1)
4500 lists, 15 equally distributed classes, average size 296, max size 999
2.75445604324
=> agf (2)
=> 4500 lists, 15 equally distributed classes, average size 296, max size 999
=> 1.77850699425
alexis
4500 lists, 15 equally distributed classes, average size 296, max size 999
3.23530197144
===================
# less number of classes, smaller lists
class_count = 15
class_size = 1000
list_count_per_class = 300
large_list_sizes = list(range(100, 1000))
small_list_sizes = list(range(0, 100))
large_list_probability = 0.1
===================
niklas
4500 lists, 15 equally distributed classes, average size 95, max size 997
0.773697137833
rik
4500 lists, 15 equally distributed classes, average size 95, max size 997
1.0523750782
katrielalex
4500 lists, 15 equally distributed classes, average size 95, max size 997
6.04466891289
agf (1)
4500 lists, 15 equally distributed classes, average size 95, max size 997
1.20285701752
=> agf (2)
=> 4500 lists, 15 equally distributed classes, average size 95, max size 997
=> 0.714507102966
alexis
4500 lists, 15 equally distributed classes, average size 95, max size 997
1.1286110878