生成所有5张纸牌扑克手
问题内容:
乍一看,这个问题听起来很简单,但事实却比看起来复杂得多。现在让我感到难过。
有52c5 = 2,598,960种方法可从52张卡片组中选择5张卡片。但是,由于花色在扑克中是可以互换的,因此其中许多花色是等效的-手2H 2C 3H
3S 4D等效于2D 2S 3D 3C
4H-只需交换花色即可。根据Wikipedia的说法,一旦您考虑了衣服的重新着色,就会有134,459张不同的5张牌。
问题是,我们如何有效地产生所有这些可能的手?我不想产生所有手牌,然后消除重复,因为我想将此问题应用于更多的牌,并且手牌数量过多以评估失控的快速盘旋。我目前的尝试集中在以下方面:要么先生成深度优先,然后跟踪当前生成的卡,以确定对下一张卡有效的西服和等级,要么广度优先,生成所有可能的下一张卡,然后通过转换每张卡来消除重复通过重新着色将手移到“规范”版本。这是我尝试使用Python广度优先的解决方案:
# A card is represented by an integer. The low 2 bits represent the suit, while
# the remainder represent the rank.
suits = 'CDHS'
ranks = '23456789TJQKA'
def make_canonical(hand):
suit_map = [None] * 4
next_suit = 0
for i in range(len(hand)):
suit = hand[i] & 3
if suit_map[suit] is None:
suit_map[suit] = next_suit
next_suit += 1
hand[i] = hand[i] & ~3 | suit_map[suit]
return hand
def expand_hand(hand, min_card):
used_map = 0
for card in hand:
used_map |= 1 << card
hands = set()
for card in range(min_card, 52):
if (1 << card) & used_map:
continue
new_hand = list(hand)
new_hand.append(card)
make_canonical(new_hand)
hands.add(tuple(new_hand))
return hands
def expand_hands(hands, num_cards):
for i in range(num_cards):
new_hands = set()
for j, hand in enumerate(hands):
min_card = hand[-1] + 1 if i > 0 else 0
new_hands.update(expand_hand(hand, min_card))
hands = new_hands
return hands
不幸的是,这产生了太多的手:
>>> len(expand_hands(set([()]), 5))
160537
谁能建议一种更好的方法来只产生不同的牌,或者指出我在尝试中出错的地方?
问题答案:
您的总体方法是合理的。我很确定问题出在您的make_canonical
功能上。您可以尝试将num_cards设置为3或4来打印出双手,并寻找您错过的等效项。
我找到了一个,但可能还有更多:
# The inputs are equivalent and should return the same value
print make_canonical([8, 12 | 1]) # returns [8, 13]
print make_canonical([12, 8 | 1]) # returns [12, 9]
供参考,以下是我的解决方案(在查看您的解决方案之前已开发)。我使用深度优先搜索而不是宽度优先搜索。另外,我没有编写将手形转换为规范形式的函数,而是编写了一个函数以检查手形是否规范。如果不是规范,我将其跳过。我定义的等级=卡%13,套装=卡/13。这些差异都不重要。
import collections
def canonical(cards):
"""
Rules for a canonical hand:
1. The cards are in sorted order
2. The i-th suit must have at least many cards as all later suits. If a
suit isn't present, it counts as having 0 cards.
3. If two suits have the same number of cards, the ranks in the first suit
must be lower or equal lexicographically (e.g., [1, 3] <= [2, 4]).
4. Must be a valid hand (no duplicate cards)
"""
if sorted(cards) != cards:
return False
by_suits = collections.defaultdict(list)
for suit in range(0, 52, 13):
by_suits[suit] = [card%13 for card in cards if suit <= card < suit+13]
if len(set(by_suits[suit])) != len(by_suits[suit]):
return False
for suit in range(13, 52, 13):
suit1 = by_suits[suit-13]
suit2 = by_suits[suit]
if not suit2: continue
if len(suit1) < len(suit2):
return False
if len(suit1) == len(suit2) and suit1 > suit2:
return False
return True
def deal_cards(permutations, n, cards):
if len(cards) == n:
permutations.append(list(cards))
return
start = 0
if cards:
start = max(cards) + 1
for card in range(start, 52):
cards.append(card)
if canonical(cards):
deal_cards(permutations, n, cards)
del cards[-1]
def generate_permutations(n):
permutations = []
deal_cards(permutations, n, [])
return permutations
for cards in generate_permutations(5):
print cards
它生成正确数量的排列:
Cashew:~/$ python2.6 /tmp/cards.py | wc
134459