PyTorch:使用torchvision.datasets.ImageFolder和DataLoader进行测试
问题内容:
我是一个新手,试图通过kaggle的Cats&Dogs数据集使用此PyTorch CNN
。由于测试图像没有目标,因此我手动对一些测试图像进行了分类,然后将该类放入文件名中,以便进行测试(也许应该只使用了一些训练图像)。
我使用了torchvision.datasets.ImageFolder类来加载训练和测试图像。训练似乎奏效。
但是,我需要做些什么才能使例程正常工作?我不知道如何通过test_x和test_y将test_data_loader与底部的测试循环连接。
该代码基于此MNIST示例CNN。在那里,在创建装载程序后立即使用类似的方法。但是我没有为我的数据集重写它:
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]
编码:
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.utils.data as data
import torchvision
from torchvision import transforms
EPOCHS = 2
BATCH_SIZE = 10
LEARNING_RATE = 0.003
TRAIN_DATA_PATH = "./train_cl/"
TEST_DATA_PATH = "./test_named_cl/"
TRANSFORM_IMG = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] )
])
train_data = torchvision.datasets.ImageFolder(root=TRAIN_DATA_PATH, transform=TRANSFORM_IMG)
train_data_loader = data.DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
test_data = torchvision.datasets.ImageFolder(root=TEST_DATA_PATH, transform=TRANSFORM_IMG)
test_data_loader = data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
class CNN(nn.Module):
# omitted...
if __name__ == '__main__':
print("Number of train samples: ", len(train_data))
print("Number of test samples: ", len(test_data))
print("Detected Classes are: ", train_data.class_to_idx) # classes are detected by folder structure
model = CNN()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
loss_func = nn.CrossEntropyLoss()
# Training and Testing
for epoch in range(EPOCHS):
for step, (x, y) in enumerate(train_data_loader):
b_x = Variable(x) # batch x (image)
b_y = Variable(y) # batch y (target)
output = model(b_x)[0]
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Test -> this is where I have no clue
if step % 50 == 0:
test_x = Variable(test_data_loader)
test_output, last_layer = model(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy = sum(pred_y == test_y) / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
问题答案:
查看来自Kaggle的数据和代码,似乎在训练和测试集的数据加载中都存在问题。首先,数据应该在每个标签的不同文件夹中,以便默认PyTorchImageFolder
正确加载它。在您的情况下,由于所有训练数据都在同一文件夹中,因此PyTorch将其作为一个类加载,因此学习似乎很有效。您可以使用-
train/dog
,- train/cat
,-
test/dog
,-等文件夹结构来更正此问题test/cat
,然后将火车和测试文件夹ImageFolder
分别传递到火车和测试。训练代码看起来不错,只需更改文件夹结构,您就可以了。看一下ImageFolder的官方文档,其中有一个类似的示例。