线性编程(Simplex LP)PuLP?
问题内容:
仅在Python中,并且使用来自Pandas数据框的数据,如何使用PuLP来解决线性编程问题,就像在Excel中一样?应该在“新预算”列下为每个渠道分配多少预算,以便我们将估计成功的总数最大化?我真的在寻找一个使用数据框数据的具体
示例 ,而不是真正的高级建议。
问题数据设置
Channel 30-day Cost Trials Success Cost Min Cost Max New Budget
0 Channel1 1765.21 9865 812 882.61 2647.82 0
1 Channel2 2700.00 15000 900 1350.00 4050.00 0
2 Channel3 2160.00 12000 333 1080.00 3240.00 0
这是一个 最大化 问题。
该 目标函数 为:
objective_function = sum((df['New Budget']/(df['30-day Cost']/df['Trials']))*(df['Success']/df['Trials']))
该 限制 是:
- 的总和
df['New Budget']
必须等于5000
- 在
New Budget
给定信道可以去不 低 比Cost Min
- 在
New Budget
给定信道可以走不 高 比Cost Max
有什么想法如何使用PuLP或任何其他求解器方法转换此熊猫数据框求解器线性问题?最终结果将是您在下图中看到的结果。
问题答案:
通常,您将创建一个变量字典(x
在这种情况下)和一个模型变量(mod
在这种情况下)。要创建目标,您需要sum
对变量乘以一些标量,然后将该结果添加到中mod
。你通过再次计算的变量的线性组合,使用构建体的限制>=
,<=
或者==
,和并称约束mod
。最后,您将使用mod.solve()
以获得解决方案。
import pulp
# Create variables and model
x = pulp.LpVariable.dicts("x", df.index, lowBound=0)
mod = pulp.LpProblem("Budget", pulp.LpMaximize)
# Objective function
objvals = {idx: (1.0/(df['30-day Cost'][idx]/df['Trials'][idx]))*(df['Success'][idx]/float(df['Trials'][idx])) for idx in df.index}
mod += sum([x[idx]*objvals[idx] for idx in df.index])
# Lower and upper bounds:
for idx in df.index:
mod += x[idx] >= df['Cost Min'][idx]
mod += x[idx] <= df['Cost Max'][idx]
# Budget sum
mod += sum([x[idx] for idx in df.index]) == 5000.0
# Solve model
mod.solve()
# Output solution
for idx in df.index:
print idx, x[idx].value()
# 0 2570.0
# 1 1350.0
# 2 1080.0
print 'Objective', pulp.value(mod.objective)
# Objective 1798.70495012
数据:
import numpy as np
import pandas as pd
idx = [0, 1, 2]
d = {'channel': pd.Series(['Channel1', 'Channel2', 'Channel3'], index=idx),
'30-day Cost': pd.Series([1765.21, 2700., 2160.], index=idx),
'Trials': pd.Series([9865, 1500, 1200], index=idx),
'Success': pd.Series([812, 900, 333], index=idx),
'Cost Min': pd.Series([882.61, 1350.00, 1080.00], index=idx),
'Cost Max': pd.Series([2647.82, 4050.00, 3240.00], index=idx)}
df = pd.DataFrame(d)
df
# 30-day Cost Cost Max Cost Min Success Trials channel
# 0 1765.21 2647.82 882.61 812 9865 Channel1
# 1 2700.00 4050.00 1350.00 900 1500 Channel2
# 2 2160.00 3240.00 1080.00 333 1200 Channel3