分类报告-精度和F分数定义不正确


问题内容

我从sklearn.metrics导入了classification_report,当我输入我的np.arrays参数时,出现以下错误:

/usr/local/lib/python3.6/dist-
packages/sklearn/metrics/classification.py:1135:UndefinedMetricWarning:精度和F分数定义不明确,在没有可预测样本的标签中设置为0.0。’precision’,’predicted’,average,warn_for)/usr/local/lib/python3.6/dist-
packages/sklearn/metrics/classification.py:1137:UndefinedMetricWarning:回忆和F分数定义不清并且被在没有真实样本的标签中设置为0.0。“
recall”,“ true”,平均值,warn_for)

这是代码:

svclassifier_polynomial = SVC(kernel = 'poly', degree = 7, C = 5)

svclassifier_polynomial.fit(X_train, y_train)
y_pred = svclassifier_polynomial.predict(X_test)


poly = classification_report(y_test, y_pred)

当我过去不使用np.array时,它工作得很好,关于如何纠正此问题的任何想法?


问题答案:

这不是错误,只是 警告 您并非所有标签都包含在中y_pred,即y_test您的分类器无法预测某些标签。

这是一个简单的可复制示例:

from sklearn.metrics import precision_score, f1_score, classification_report

y_true = [0, 1, 2, 0, 1, 2] # 3-class problem
y_pred = [0, 0, 1, 0, 0, 1] # we never predict '2'

precision_score(y_true, y_pred, average='macro') 
[...] UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. 
  'precision', 'predicted', average, warn_for)
0.16666666666666666

precision_score(y_true, y_pred, average='micro') # no warning
0.3333333333333333

precision_score(y_true, y_pred, average=None) 
[...] UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. 
  'precision', 'predicted', average, warn_for)
array([0.5, 0. , 0. ])

会产生完全相同的警告f1_score(未显示)。

实际上,这只是警告您,在中classification_report,没有预测样本的标签的相应值(在此处2)将设置为0:

print(classification_report(y_true, y_pred))


              precision    recall  f1-score   support

           0       0.50      1.00      0.67         2
           1       0.00      0.00      0.00         2
           2       0.00      0.00      0.00         2

   micro avg       0.33      0.33      0.33         6
   macro avg       0.17      0.33      0.22         6
weighted avg       0.17      0.33      0.22         6

[...] UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. 
  'precision', 'predicted', average, warn_for)

当我过去不使用np.array时,它工作得很好

高度怀疑,因为在上面的示例中,我使用了简单的Python列表,而不是Numpy数组…