NetworkX节点标签的相对位置
问题内容:
- 我正在努力解决以下问题。我想根据以前完成的分类绘制一个大约100个节点的圆形图,必须在其中手动定位它们。这些节点有一个分配的标签,用不同的文本长度来描述它们,我想将此标签放在节点附近。下图是我要获取的图形(我画了一个蓝色圆圈,只是为了表明标签在外围完全对齐): https
- //i.stack.imgur.com/Qre0Z.png
- 到目前为止,我仅能得出以下 结论: https
- //i.stack.imgur.com/U7bZG.png
这是MWE:
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
n = 7
G = nx.complete_graph(n)
node_list = sorted(G.nodes())
angle = []
angle_dict = {}
for i, node in zip(xrange(n),node_list):
theta = 2.0*np.pi*i/n
angle.append((np.cos(theta),np.sin(theta)))
angle_dict[node] = theta
pos = {}
for node_i, node in enumerate(node_list):
pos[node] = angle[node_i]
labels = {0:'zero',1:'oneone',2:'twotwo',3:'threethreethree',4:'fourfourfourfour',5:'fivefivefivefivefive',6:'sixsixsixsixsixsix'}
# figsize is intentionally set small to condense the graph
f = plt.figure(figsize=(2,2))
r = f.canvas.get_renderer()
plt.axis('equal')
nx.draw(G,pos=pos,with_labels=True)
description = nx.draw_networkx_labels(G,pos,labels=labels)
for node, t in description.items():
t.set_rotation(angle_dict[node]*360.0/(2.0*np.pi))
plt.show()
我想我必须添加并使用
x, y = t.get_position()
bb = t.get_window_extent(renderer=r)
radius = 1.0+2.0*bb.width/r.width
t.set_position((radius*x,radius*y))
在设置标签旋转的循环中。但是,我不知道如何正确设置它以及如何避免裁剪画布。
问题答案:
为了在轴外显示标签,您需要使轴与图形相比较小,例如,通过在轴周围引入较大的边距。您还需要设置文本的剪辑状态,以使其不会被轴切断。
根据边界框的宽度定位标签将需要先将边界框从显示共形转换为数据坐标。
完整的解决方案:
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
n = 7
G = nx.complete_graph(n)
node_list = sorted(G.nodes())
angle = []
angle_dict = {}
for i, node in zip(xrange(n),node_list):
theta = 2.0*np.pi*i/n
angle.append((np.cos(theta),np.sin(theta)))
angle_dict[node] = theta
pos = {}
for node_i, node in enumerate(node_list):
pos[node] = angle[node_i]
labels = {0:'zero',1:'oneone',2:'twotwo',3:'threethreethree',4:'fourfourfourfour',5:'fivefivefivefivefive',6:'sixsixsixsixsixsix'}
# figsize is intentionally set small to condense the graph
fig, ax = plt.subplots(figsize=(5,5))
margin=0.33
fig.subplots_adjust(margin, margin, 1.-margin, 1.-margin)
ax.axis('equal')
nx.draw(G,pos=pos,with_labels=True, ax=ax)
description = nx.draw_networkx_labels(G,pos,labels=labels)
r = fig.canvas.get_renderer()
trans = plt.gca().transData.inverted()
for node, t in description.items():
bb = t.get_window_extent(renderer=r)
bbdata = bb.transformed(trans)
radius = 1.2+bbdata.width/2.
position = (radius*np.cos(angle_dict[node]),radius* np.sin(angle_dict[node]))
t.set_position(position)
t.set_rotation(angle_dict[node]*360.0/(2.0*np.pi))
t.set_clip_on(False)
plt.show()