初始化keras占位符作为自定义层的输入
问题内容:
我想使用自定义keras层来操纵上一层的激活。下一层只是将数字与上一层的激活数相乘。
class myLayer(Layer):
def __init__(self, **kwargs):
super(myLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.output_dim = input_shape[0][1]
super(myLayer, self).build(input_shape)
def call(self, inputs, **kwargs):
if not isinstance(inputs, list):
raise ValueError('This layer should be called on a list of inputs.')
mainInput = inputs[0]
nInput = inputs[1]
changed = tf.multiply(mainInput,nInput)
forTest = changed
forTrain = inputs[0]
return K.in_train_phase(forTrain, forTest)
def compute_output_shape(self, input_shape):
print(input_shape)
return (input_shape[0][0], self.output_dim)
我正在创建模型
inputTensor = Input((5,))
out = Dense(units, input_shape=(5,),activation='relu')(inputTensor)
n = K.placeholder(shape=(1,))
auxInput = Input(tensor=n)
out = myLayer()([out, auxInput])
out = Dense(units, activation='relu')(out)
out = Dense(3, activation='softmax')(out)
model = Model(inputs=[inputTensor, auxInput], outputs=out)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics='acc'])
尝试使用时出现此错误
model.fit(X_train, Y_train, epochs=epochs, verbose=1)
错误
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_3' with dtype float and shape [1]
当我尝试将值赋予占位符时
model.fit([X_train, np.array([3])], Y_train, epochs=epochs, verbose=1)
我得到:
ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 1 arrays but instead got the following list of 2 arrays:
我应该如何初始化这个占位符?我的目标是使用model.evaluate在推理期间测试模型中n个不同值的影响。谢谢。
问题答案:
我找到了一种避免将数组用于的解决方案n
。
代替使用a placeholder
,而使用K.variable
:
n = K.variable([someInitialValue])
auxInput = Input(tensor=n)
然后n
,即使在编译模型之后,您也可以随时设置这样的值:
K.set_value(n,[anotherValue])
这使您无需重新编译模型,也无需传递n
给fit
方法即可继续进行训练。
model.fit(X_train,Y_train,....)
如果使用许多类似的输入,则可以:
n = K.variable([val1,val2,val3,val4]) #tensor definition
K.set_value(n,[new1,new2,new3,new4]) #changing values
在图层内部,第二个输入(即张量)n
将包含4个元素:
n1 = inputs[1][0]
n2 = inputs[1][1]
....