使用PyEphem计算阴影长度
问题内容:
我正在使用PyEphem,并想计算阴影的长度(假设一根长度为单位的棍子插在地面上)。长度将由cot(phi)给出,其中phi是太阳仰角(如果我错了,请纠正我)。我不确定要在太阳上使用哪个领域?在下面的示例中,我使用的是角度alt:
import ephem, math
o = ephem.Observer()
o.lat, o.long = '37.0625', '-95.677068'
sun = ephem.Sun()
sunrise = o.previous_rising(sun, start=ephem.now())
noon = o.next_transit(sun, start=sunrise)
shadow = 1 / math.tan(sun.alt)
请在下面检查我的解释:
- 如果切线是无限大,则表示太阳正好在头顶上方且没有阴影。
- 如果切线为零,则表示太阳在地平线上,阴影无限长。
- 我不知道如何解释cot(phi)的负面结果。有人能帮我吗?
最后,对于给定ephem.Observer(),我对如何使用PyEphem从阴影长度向后工作感到困惑,直到下次太阳将投射该长度的阴影时。
我将不胜感激。
问题答案:
在太阳上使用哪个场?
该sun.alt
是正确的。alt
是地平线以上的高度;它们与北方以东的方位角一起确定了相对于地平线的视在位置。
您的计算几乎是正确的。您忘记提供观察员了:sun = ephem.Sun(o)
。
- 我不知道如何解释cot(phi)的负面结果。有人能帮我吗?
在这种情况下,太阳在地平线以下。
最后,对于给定ephem.Observer(),我对如何使用PyEphem从阴影长度向后工作感到困惑,直到下次太阳将投射该长度的阴影时。
这是一个提供功能的脚本:g(date) -> altitude
计算下次太阳投射阴影的时间与当前长度相同(方位角-不考虑阴影的方向):
#!/usr/bin/env python
import math
import ephem
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
def main():
# find a shadow length for a unit-length stick
o = ephem.Observer()
o.lat, o.long = '37.0625', '-95.677068'
now = o.date
sun = ephem.Sun(o) #NOTE: use observer; it provides coordinates and time
A = sun.alt
shadow_len = 1 / math.tan(A)
# find the next time when the sun will cast a shadow of the same length
t = ephem.Date(find_next_time(shadow_len, o, sun))
print "current time:", now, "next time:", t # UTC time
####print ephem.localtime(t) # print "next time" in a local timezone
def update(time, sun, observer):
"""Update Sun and observer using given `time`."""
observer.date = time
sun.compute(observer) # computes `sun.alt` implicitly.
# return nothing to remember that it modifies objects inplace
def find_next_time(shadow_len, observer, sun, dt=1e-3):
"""Solve `sun_altitude(time) = known_altitude` equation w.r.t. time."""
def f(t):
"""Convert the equation to `f(t) = 0` form for the Brent's method.
where f(t) = sun_altitude(t) - known_altitude
"""
A = math.atan(1./shadow_len) # len -> altitude
update(t, sun, observer)
return sun.alt - A
# find a, b such as f(a), f(b) have opposite signs
now = observer.date # time in days
x = np.arange(now, now + 1, dt) # consider 1 day
plt.plot(x, map(f, x))
plt.grid(True)
####plt.show()
# use a, b from the plot (uncomment previous line to see it)
a, b = now+0.2, now+0.8
return opt.brentq(f, a, b) # solve f(t) = 0 equation using Brent's method
if __name__=="__main__":
main()
输出量
current time: 2011/4/19 23:22:52 next time: 2011/4/20 13:20:01