组合,不重复N个元素,无需使用..to..do
问题内容:
我想将N个数字的组合而不是重复地加载到列表中,以输入元素和组。例如,对于4个元素[1,2,3,4],我具有:
Group 1: [1][2][3][4];
Group 2: [1,2][1,3][1,4][2,3][2,4][3,4];
Group 3: [1,2,3][1,2,4][1,3,4][2,3,4]
Group 4: [1,2,3,4]
现在,我已经解决了使用嵌套循环的问题,例如对于第2组,我写道:
for x1 := 1 to 3 do
for x2 := Succ(x1) to 4 do
begin
// x1, x2 //
end
或对于第3组,我写道:
for x1 := 1 to 2 do
for x2 := Succ(x1) to 3 do
for x3 := Succ(x2) to 4 do
begin
// x1, x2, x3 //
end
其他群体也是如此。通常,如果我想为N组做此事,而又不写带有嵌套循环的N个过程,可以吗?我曾想过一会儿..do循环一个用于计数器,一个用于组计数,但是这有点困难,我想知道是否有一些更简单,更快速的解决方案,也可以使用运算符boolean或类似的东西。谁能给我一些建议?非常感谢。
问题答案:
看来您正在寻找一种快速算法来计算所有k个组合。以下Delphi代码是此处找到的C代码的直接翻译:生成组合。我什至修复了该代码中的错误!
program kCombinations;
{$APPTYPE CONSOLE}
// Prints out a combination like {1, 2}
procedure printc(const comb: array of Integer; k: Integer);
var
i: Integer;
begin
Write('{');
for i := 0 to k-1 do
begin
Write(comb[i]+1);
if i<k-1 then
Write(',');
end;
Writeln('}');
end;
(*
Generates the next combination of n elements as k after comb
comb => the previous combination ( use (0, 1, 2, ..., k) for first)
k => the size of the subsets to generate
n => the size of the original set
Returns: True if a valid combination was found, False otherwise
*)
function next_comb(var comb: array of Integer; k, n: Integer): Boolean;
var
i: Integer;
begin
i := k - 1;
inc(comb[i]);
while (i>0) and (comb[i]>=n-k+1+i) do
begin
dec(i);
inc(comb[i]);
end;
if comb[0]>n-k then// Combination (n-k, n-k+1, ..., n) reached
begin
// No more combinations can be generated
Result := False;
exit;
end;
// comb now looks like (..., x, n, n, n, ..., n).
// Turn it into (..., x, x + 1, x + 2, ...)
for i := i+1 to k-1 do
comb[i] := comb[i-1]+1;
Result := True;
end;
procedure Main;
const
n = 4;// The size of the set; for {1, 2, 3, 4} it's 4
k = 2;// The size of the subsets; for {1, 2}, {1, 3}, ... it's 2
var
i: Integer;
comb: array of Integer;
begin
SetLength(comb, k);// comb[i] is the index of the i-th element in the combination
//Setup comb for the initial combination
for i := 0 to k-1 do
comb[i] := i;
// Print the first combination
printc(comb, k);
// Generate and print all the other combinations
while next_comb(comb, k, n) do
printc(comb, k);
end;
begin
Main;
Readln;
end.
输出量
{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}