Python:tf-idf-cosine:查找文档相似性
问题内容:
我正在关注第1部分和第2部分中可用的教程。不幸的是,作者没有时间进行最后一节,涉及使用余弦相似度实际找到两个文档之间的距离。我在stackoverflow的以下链接的帮助下关注了本文中的示例,其中包括上述链接中提到的代码(只是为了使生活更轻松)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import stopwords
import numpy as np
import numpy.linalg as LA
train_set = ["The sky is blue.", "The sun is bright."] # Documents
test_set = ["The sun in the sky is bright."] # Query
stopWords = stopwords.words('english')
vectorizer = CountVectorizer(stop_words = stopWords)
#print vectorizer
transformer = TfidfTransformer()
#print transformer
trainVectorizerArray = vectorizer.fit_transform(train_set).toarray()
testVectorizerArray = vectorizer.transform(test_set).toarray()
print 'Fit Vectorizer to train set', trainVectorizerArray
print 'Transform Vectorizer to test set', testVectorizerArray
transformer.fit(trainVectorizerArray)
print
print transformer.transform(trainVectorizerArray).toarray()
transformer.fit(testVectorizerArray)
print
tfidf = transformer.transform(testVectorizerArray)
print tfidf.todense()
由于上述代码,我有以下矩阵
Fit Vectorizer to train set [[1 0 1 0]
[0 1 0 1]]
Transform Vectorizer to test set [[0 1 1 1]]
[[ 0.70710678 0. 0.70710678 0. ]
[ 0. 0.70710678 0. 0.70710678]]
[[ 0. 0.57735027 0.57735027 0.57735027]]
我不确定如何使用此输出来计算余弦相似度,我知道如何针对长度相似的两个向量实现余弦相似度,但是在这里我不确定如何识别这两个向量。
问题答案:
通过@excray注释的帮助,我设法弄清楚答案,实际上,我们需要编写一个简单的for循环,以迭代表示火车数据和测试数据的两个数组。
首先实现一个简单的lambda函数来保存用于余弦计算的公式:
cosine_function = lambda a, b : round(np.inner(a, b)/(LA.norm(a)*LA.norm(b)), 3)
然后只需编写一个简单的for循环以遍历to向量,每个逻辑都是“对于trainVectorizerArray中的每个向量,必须在testVectorizerArray中找到与向量的余弦相似度。”
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import stopwords
import numpy as np
import numpy.linalg as LA
train_set = ["The sky is blue.", "The sun is bright."] #Documents
test_set = ["The sun in the sky is bright."] #Query
stopWords = stopwords.words('english')
vectorizer = CountVectorizer(stop_words = stopWords)
#print vectorizer
transformer = TfidfTransformer()
#print transformer
trainVectorizerArray = vectorizer.fit_transform(train_set).toarray()
testVectorizerArray = vectorizer.transform(test_set).toarray()
print 'Fit Vectorizer to train set', trainVectorizerArray
print 'Transform Vectorizer to test set', testVectorizerArray
cx = lambda a, b : round(np.inner(a, b)/(LA.norm(a)*LA.norm(b)), 3)
for vector in trainVectorizerArray:
print vector
for testV in testVectorizerArray:
print testV
cosine = cx(vector, testV)
print cosine
transformer.fit(trainVectorizerArray)
print
print transformer.transform(trainVectorizerArray).toarray()
transformer.fit(testVectorizerArray)
print
tfidf = transformer.transform(testVectorizerArray)
print tfidf.todense()
这是输出:
Fit Vectorizer to train set [[1 0 1 0]
[0 1 0 1]]
Transform Vectorizer to test set [[0 1 1 1]]
[1 0 1 0]
[0 1 1 1]
0.408
[0 1 0 1]
[0 1 1 1]
0.816
[[ 0.70710678 0. 0.70710678 0. ]
[ 0. 0.70710678 0. 0.70710678]]
[[ 0. 0.57735027 0.57735027 0.57735027]]