检测颜色并从图像中删除该颜色
问题内容:
我的图像带有浅紫色图像,背景为深蓝色。我的目标是从图像中识别文本。因此,我正在尝试从背景中去除浅紫色,以使我的图像没有噪点,但是我找不到该图像的确切颜色代码,因为它在各个地方都有些不同,因此我无法屏蔽图片。这是我的代码
import numpy as np
from PIL import Image
im = Image.open('capture.png')
im = im.convert('RGBA')
data = np.array(im)
rgb = data[:,:,:3]
color = [27, 49, 89] # Original value to be mask
black = [0,0,0, 255]
white = [255,255,255,255]
mask = np.all(rgb == color, axis = -1)
data[mask] = black
data[np.logical_not(mask)] = white
new_im = Image.fromarray(data)
new_im.save('new_file.png')
所以我想,如果我可以去除所有特定颜色范围内的颜色,例如[R:0-20,G:0-20,B:80-100],那也许会有用。有人可以告诉我我该怎么做。
解决该问题的任何其他建议也将不胜感激。
问题答案:
由于文本和背景似乎有明显的阴影,因此在这里应使用颜色阈值。想法是将图像转换为HSV格式,然后使用上下阈值生成二进制分割的掩码,然后按位生成文本并提取文本。这是使用Python
OpenCV的实现
使用这个上下阈值,我们得到这个面具
lower = np.array([0, 120, 0])
upper = np.array([179, 255, 255])
然后我们按位处理原始图像
最后我们阈值得到二进制图像,前景文本为黑色,背景为白色
import numpy as np
import cv2
# Color threshold
image = cv2.imread('1.png')
original = image.copy()
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower = np.array([0, 120, 0])
upper = np.array([179, 255, 255])
mask = cv2.inRange(hsv, lower, upper)
result = cv2.bitwise_and(original,original,mask=mask)
result[mask==0] = (255,255,255)
# Make text black and foreground white
result = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
result = cv2.threshold(result, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)[1]
cv2.imshow('mask', mask)
cv2.imshow('result', result)
cv2.waitKey()
您可以使用此HSV颜色阈值脚本来确定上下阈值
import cv2
import sys
import numpy as np
def nothing(x):
pass
# Load in image
image = cv2.imread('1.png')
# Create a window
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)
# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)
# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0
output = image
wait_time = 33
while(1):
# get current positions of all trackbars
hMin = cv2.getTrackbarPos('HMin','image')
sMin = cv2.getTrackbarPos('SMin','image')
vMin = cv2.getTrackbarPos('VMin','image')
hMax = cv2.getTrackbarPos('HMax','image')
sMax = cv2.getTrackbarPos('SMax','image')
vMax = cv2.getTrackbarPos('VMax','image')
# Set minimum and max HSV values to display
lower = np.array([hMin, sMin, vMin])
upper = np.array([hMax, sMax, vMax])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
output = cv2.bitwise_and(image,image, mask= mask)
# Print if there is a change in HSV value
if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
phMin = hMin
psMin = sMin
pvMin = vMin
phMax = hMax
psMax = sMax
pvMax = vMax
# Display output image
cv2.imshow('image',output)
# Wait longer to prevent freeze for videos.
if cv2.waitKey(wait_time) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()