matplotlib表面图隐藏了散点,这些散点应该在前面
问题内容:
关于matplotlib 3d曲面的另一个问题…我有代码向matplotlib曲面图添加了一个散点。
我的问题是,无论您从哪个角度查看该点,该点 始终都
出现在曲面的后面。
如果我用3条短线拼凑出一个(非常丑陋的)版本以标记同一点,则它是可见的。
我已经关闭了该depthshade
功能,所以不是这样。谁能解释正在发生的事情以及如何纠正它?这是代码的简化版本:
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
df = pd.DataFrame({10: {10: 1,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
15: {10: 4,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
20: {10: 6,15: 3,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
25: {10: 7,15: 5,20: 3,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
30: {10: 9,15: 6,20: 4,25: 3,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
35: {10: 10,15: 7,20: 5,25: 4,30: 2,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
40: {10: 11,15: 8,20: 6,25: 4,30: 3,35: 2,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
45: {10: 12,15: 9,20: 7,25: 5,30: 4,35: 3,40: 2,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
50: {10: 13,15: 9,20: 7,25: 6,30: 5,35: 4,40: 3,45: 2,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
55: {10: 14,15: 10,20: 8,25: 7,30: 5,35: 4,40: 3,45: 3,50: 2,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
60: {10: 15,15: 11,20: 9,25: 7,30: 6,35: 5,40: 4,45: 3,50: 3,55: 2,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
65: {10: 16,15: 12,20: 9,25: 8,30: 6,35: 5,40: 5,45: 4,50: 3,55: 2,60: 2,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
70: {10: 17,15: 12,20: 10,25: 8,30: 7,35: 6,40: 5,45: 4,50: 4,55: 3,60: 2,65: 2,70: 1,75: 1,80: 1,85: 1,90: 1},
75: {10: 18,15: 13,20: 10,25: 9,30: 7,35: 6,40: 5,45: 5,50: 4,55: 3,60: 3,65: 2,70: 2,75: 1,80: 1,85: 1,90: 1},
80: {10: 19,15: 14,20: 11,25: 9,30: 8,35: 7,40: 6,45: 5,50: 4,55: 4,60: 3,65: 3,70: 2,75: 2,80: 1,85: 1,90: 1},
85: {10: 21,15: 14,20: 11,25: 10,30: 8,35: 7,40: 6,45: 6,50: 5,55: 4,60: 4,65: 3,70: 3,75: 2,80: 2,85: 1,90: 1},
90: {10: 23,15: 15,20: 12,25: 10,30: 9,35: 8,40: 7,45: 6,50: 5,55: 5,60: 4,65: 3,70: 3,75: 3,80: 2,85: 2,90: 1}})
xv, yv = np.meshgrid(df.index, df.columns)
ma = np.nanmax(df.values)
norm = matplotlib.colors.Normalize(vmin = 0, vmax = ma, clip = True)
fig = plt.figure(1)
ax = Axes3D(fig)
surf = ax.plot_surface(yv,xv,df, cmap='viridis_r', linewidth=0.3,
alpha = 0.8, edgecolor = 'k', norm=norm)
ax.scatter(25,35,4, c='k', depthshade=False, alpha = 1, s=100)
fig = plt.figure(2)
ax = Axes3D(fig)
surf = ax.plot_surface(yv,xv,df, cmap='viridis_r', linewidth=0.3,
alpha = 0.8, edgecolor = 'k', norm=norm)
line1_x = [25,25]
line1_y = [35,35]
line1_z = [3,5]
line2_x = [25,25]
line2_y = [33,37]
line2_z = [4,4]
line3_x = [23,27]
line3_y = [35,35]
line3_z = [4,4]
ax.plot(line1_x, line1_y, line1_z, alpha = 1, linewidth = 1, color='k')
ax.plot(line2_x, line2_y, line2_z, alpha = 1, linewidth = 1, color='k')
ax.plot(line3_x, line3_y, line3_z, alpha = 1, linewidth = 1, color='k')
plt.show()
问题答案:
好的,按照T先生的评论,似乎没有 直接的
方法可以解决这个问题。但是,对于我要执行的操作,有一种解决方法(突出显示表面上的特定点)。使用matplotlib.patches
和mpl_toolkits.mplot3d.art3d
模块,可以在图形上的适当位置绘制一个圆,而这似乎不受同一问题的影响。
修改后的代码为:
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D, art3d
from matplotlib.patches import Circle
import numpy as np
df = pd.DataFrame({10: {10: 1,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
15: {10: 4,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
20: {10: 6,15: 3,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
25: {10: 7,15: 5,20: 3,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
30: {10: 9,15: 6,20: 4,25: 3,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
35: {10: 10,15: 7,20: 5,25: 4,30: 2,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
40: {10: 11,15: 8,20: 6,25: 4,30: 3,35: 2,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
45: {10: 12,15: 9,20: 7,25: 5,30: 4,35: 3,40: 2,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
50: {10: 13,15: 9,20: 7,25: 6,30: 5,35: 4,40: 3,45: 2,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
55: {10: 14,15: 10,20: 8,25: 7,30: 5,35: 4,40: 3,45: 3,50: 2,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
60: {10: 15,15: 11,20: 9,25: 7,30: 6,35: 5,40: 4,45: 3,50: 3,55: 2,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
65: {10: 16,15: 12,20: 9,25: 8,30: 6,35: 5,40: 5,45: 4,50: 3,55: 2,60: 2,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
70: {10: 17,15: 12,20: 10,25: 8,30: 7,35: 6,40: 5,45: 4,50: 4,55: 3,60: 2,65: 2,70: 1,75: 1,80: 1,85: 1,90: 1},
75: {10: 18,15: 13,20: 10,25: 9,30: 7,35: 6,40: 5,45: 5,50: 4,55: 3,60: 3,65: 2,70: 2,75: 1,80: 1,85: 1,90: 1},
80: {10: 19,15: 14,20: 11,25: 9,30: 8,35: 7,40: 6,45: 5,50: 4,55: 4,60: 3,65: 3,70: 2,75: 2,80: 1,85: 1,90: 1},
85: {10: 21,15: 14,20: 11,25: 10,30: 8,35: 7,40: 6,45: 6,50: 5,55: 4,60: 4,65: 3,70: 3,75: 2,80: 2,85: 1,90: 1},
90: {10: 23,15: 15,20: 12,25: 10,30: 9,35: 8,40: 7,45: 6,50: 5,55: 5,60: 4,65: 3,70: 3,75: 3,80: 2,85: 2,90: 1}})
xv, yv = np.meshgrid(df.index, df.columns)
ma = np.nanmax(df.values)
norm = matplotlib.colors.Normalize(vmin = 0, vmax = ma, clip = True)
fig = plt.figure(1)
ax = Axes3D(fig)
surf = ax.plot_surface(yv,xv,df, cmap='viridis_r', linewidth=0.3,
alpha = 0.8, edgecolor = 'k', norm=norm)
p = Circle((25, 35), 3, ec='k', fc="none")
ax.add_patch(p)
art3d.pathpatch_2d_to_3d(p, z=4, zdir="z")
plt.show()