Python源码示例:go.N
示例1
def get_default_hyperparams(**overrides):
"""Returns the hyperparams for the neural net.
In other words, returns a dict whose parameters come from the AGZ
paper:
k: number of filters (AlphaGoZero used 256). We use 128 by
default for a 19x19 go board.
fc_width: Dimensionality of the fully connected linear layer
num_shared_layers: number of shared residual blocks. AGZ used both 19
and 39. Here we use 19 because it's faster to train.
l2_strength: The L2 regularization parameter.
momentum: The momentum parameter for training
"""
k = _round_power_of_two(go.N ** 2 / 3) # width of each layer
hparams = {
'k': k, # Width of each conv layer
'fc_width': 2 * k, # Width of each fully connected layer
'num_shared_layers': go.N, # Number of shared trunk layers
'l2_strength': 1e-4, # Regularization strength
'momentum': 0.9, # Momentum used in SGD
}
hparams.update(**overrides)
return hparams
示例2
def incorporate_results(self, move_probabilities, value, up_to):
assert move_probabilities.shape == (go.N * go.N + 1,)
# A finished game should not be going through this code path - should
# directly call backup_value() on the result of the game.
assert not self.position.is_game_over()
if self.is_expanded:
self.revert_visits(up_to=up_to)
return
self.is_expanded = True
self.original_prior = self.child_prior = move_probabilities
# initialize child Q as current node's value, to prevent dynamics where
# if B is winning, then B will only ever explore 1 move, because the Q
# estimation will be so much larger than the 0 of the other moves.
#
# Conversely, if W is winning, then B will explore all 362 moves before
# continuing to explore the most favorable move. This is a waste of search.
#
# The value seeded here acts as a prior, and gets averaged into Q calculations.
self.child_W = np.ones([go.N * go.N + 1], dtype=np.float32) * value
self.backup_value(value, up_to=up_to)
示例3
def stone_features(position):
# a bit easier to calculate it with axis 0 being the 16 board states,
# and then roll axis 0 to the end.
features = np.zeros([16, go.N, go.N], dtype=np.uint8)
num_deltas_avail = position.board_deltas.shape[0]
cumulative_deltas = np.cumsum(position.board_deltas, axis=0)
last_eight = np.tile(position.board, [8, 1, 1])
# apply deltas to compute previous board states
last_eight[1:num_deltas_avail + 1] -= cumulative_deltas
# if no more deltas are available, just repeat oldest board.
last_eight[num_deltas_avail +
1:] = last_eight[num_deltas_avail].reshape(1, go.N, go.N)
features[::2] = last_eight == position.to_play
features[1::2] = last_eight == -position.to_play
return np.rollaxis(features, 0, 3)
示例4
def make_tf_example(features, pi, value):
'''
Args:
features: [N, N, FEATURE_DIM] nparray of uint8
pi: [N * N + 1] nparray of float32
value: float
'''
return tf.train.Example(features=tf.train.Features(feature={
'x': tf.train.Feature(
bytes_list=tf.train.BytesList(
value=[features.tostring()])),
'pi': tf.train.Feature(
bytes_list=tf.train.BytesList(
value=[pi.tostring()])),
'outcome': tf.train.Feature(
float_list=tf.train.FloatList(
value=[value]))}))
# Write tf.Example to files
示例5
def test_pick_moves(self):
player = initialize_basic_player()
root = player.root
root.child_N[coords.to_flat((2, 0))] = 10
root.child_N[coords.to_flat((1, 0))] = 5
root.child_N[coords.to_flat((3, 0))] = 1
root.position.n = go.N ** 2 # move 81, or 361, or... Endgame.
# Assert we're picking deterministically
self.assertTrue(root.position.n > player.temp_threshold)
move = player.pick_move()
self.assertEqual(move, (2, 0))
# But if we're in the early part of the game, pick randomly
root.position.n = 3
self.assertFalse(player.root.position.n > player.temp_threshold)
with mock.patch('random.random', lambda: .5):
move = player.pick_move()
self.assertEqual(move, (2, 0))
with mock.patch('random.random', lambda: .99):
move = player.pick_move()
self.assertEqual(move, (3, 0))
示例6
def test_dont_pass_if_losing(self):
player = initialize_almost_done_player()
# check -- white is losing.
self.assertEqual(player.root.position.score(), -0.5)
for i in range(20):
player.tree_search()
# uncomment to debug this test
# print(player.root.describe())
# Search should converge on D9 as only winning move.
flattened = coords.to_flat(coords.from_kgs('D9'))
best_move = np.argmax(player.root.child_N)
self.assertEqual(best_move, flattened)
# D9 should have a positive value
self.assertGreater(player.root.children[flattened].Q, 0)
self.assertGreaterEqual(player.root.N, 20)
# passing should be ineffective.
self.assertLess(player.root.child_Q[-1], 0)
# no virtual losses should be pending
self.assertNoPendingVirtualLosses(player.root)
# uncomment to debug this test
# print(player.root.describe())
示例7
def test_only_check_game_end_once(self):
# When presented with a situation where the last move was a pass,
# and we have to decide whether to pass, it should be the first thing
# we check, but not more than that.
white_passed_pos = go.Position(
).play_move((3, 3) # b plays
).play_move((3, 4) # w plays
).play_move((4, 3) # b plays
).pass_move() # w passes - if B passes too, B would lose by komi.
player = MCTSPlayerMixin(DummyNet())
player.initialize_game(white_passed_pos)
# initialize the root
player.tree_search()
# explore a child - should be a pass move.
player.tree_search()
pass_move = go.N * go.N
self.assertEqual(player.root.children[pass_move].N, 1)
self.assertEqual(player.root.child_N[pass_move], 1)
player.tree_search()
# check that we didn't visit the pass node any more times.
self.assertEqual(player.root.child_N[pass_move], 1)
示例8
def test_never_select_illegal_moves(self):
probs = np.array([0.02] * (go.N * go.N + 1))
# let's say the NN were to accidentally put a high weight on an illegal move
probs[1] = 0.99
root = MCTSNode(SEND_TWO_RETURN_ONE)
root.incorporate_results(probs, 0, root)
# and let's say the root were visited a lot of times, which pumps up the
# action score for unvisited moves...
root.N = 100000
root.child_N[root.position.all_legal_moves()] = 10000
# this should not throw an error...
leaf = root.select_leaf()
# the returned leaf should not be the illegal move
self.assertNotEqual(leaf.fmove, 1)
# and even after injecting noise, we should still not select an illegal move
for i in range(10):
root.inject_noise()
leaf = root.select_leaf()
self.assertNotEqual(leaf.fmove, 1)
示例9
def load_board(string):
reverse_map = {
'X': go.BLACK,
'O': go.WHITE,
'.': go.EMPTY,
'#': go.FILL,
'*': go.KO,
'?': go.UNKNOWN
}
string = re.sub(r'[^XO\.#]+', '', string)
assert len(string) == go.N ** 2, "Board to load didn't have right dimensions"
board = np.zeros([go.N, go.N], dtype=np.int8)
for i, char in enumerate(string):
np.ravel(board)[i] = reverse_map[char]
return board
示例10
def make_sgf(
move_history,
result_string,
ruleset="Chinese",
komi=7.5,
white_name=PROGRAM_IDENTIFIER,
black_name=PROGRAM_IDENTIFIER,
comments=[]
):
'''Turn a game into SGF.
Doesn't handle handicap games or positions with incomplete history.
Args:
move_history: iterable of PlayerMoves
result_string: "B+R", "W+0.5", etc.
comments: iterable of string/None. Will be zipped with move_history.
'''
boardsize = go.N
game_moves = ''.join(translate_sgf_move(*z)
for z in itertools.zip_longest(move_history, comments))
result = result_string
return SGF_TEMPLATE.format(**locals())
示例11
def get_default_hyperparams(**overrides):
"""Returns the hyperparams for the neural net.
In other words, returns a dict whose parameters come from the AGZ
paper:
k: number of filters (AlphaGoZero used 256). We use 128 by
default for a 19x19 go board.
fc_width: Dimensionality of the fully connected linear layer
num_shared_layers: number of shared residual blocks. AGZ used both 19
and 39. Here we use 19 because it's faster to train.
l2_strength: The L2 regularization parameter.
momentum: The momentum parameter for training
"""
k = _round_power_of_two(go.N ** 2 / 3) # width of each layer
hparams = {
'k': k, # Width of each conv layer
'fc_width': 2 * k, # Width of each fully connected layer
'num_shared_layers': go.N, # Number of shared trunk layers
'l2_strength': 1e-4, # Regularization strength
'momentum': 0.9, # Momentum used in SGD
}
hparams.update(**overrides)
return hparams
示例12
def __init__(self, position, fmove=None, parent=None):
if parent is None:
parent = DummyNode()
self.parent = parent
self.fmove = fmove # move that led to this position, as flattened coords
self.position = position
self.is_expanded = False
self.losses_applied = 0 # number of virtual losses on this node
# using child_() allows vectorized computation of action score.
self.illegal_moves = 1000 * (1 - self.position.all_legal_moves())
self.child_N = np.zeros([go.N * go.N + 1], dtype=np.float32)
self.child_W = np.zeros([go.N * go.N + 1], dtype=np.float32)
# save a copy of the original prior before it gets mutated by d-noise.
self.original_prior = np.zeros([go.N * go.N + 1], dtype=np.float32)
self.child_prior = np.zeros([go.N * go.N + 1], dtype=np.float32)
self.children = {} # map of flattened moves to resulting MCTSNode
示例13
def select_leaf(self):
current = self
pass_move = go.N * go.N
while True:
current.N += 1
# if a node has never been evaluated, we have no basis to select a child.
if not current.is_expanded:
break
# HACK: if last move was a pass, always investigate double-pass first
# to avoid situations where we auto-lose by passing too early.
if (current.position.recent
and current.position.recent[-1].move is None
and current.child_N[pass_move] == 0):
current = current.maybe_add_child(pass_move)
continue
best_move = np.argmax(current.child_action_score)
current = current.maybe_add_child(best_move)
return current
示例14
def incorporate_results(self, move_probabilities, value, up_to):
assert move_probabilities.shape == (go.N * go.N + 1,)
# A finished game should not be going through this code path - should
# directly call backup_value() on the result of the game.
assert not self.position.is_game_over()
if self.is_expanded:
self.revert_visits(up_to=up_to)
return
self.is_expanded = True
self.original_prior = self.child_prior = move_probabilities
# initialize child Q as current node's value, to prevent dynamics where
# if B is winning, then B will only ever explore 1 move, because the Q
# estimation will be so much larger than the 0 of the other moves.
#
# Conversely, if W is winning, then B will explore all 362 moves before
# continuing to explore the most favorable move. This is a waste of search.
#
# The value seeded here acts as a prior, and gets averaged into Q calculations.
self.child_W = np.ones([go.N * go.N + 1], dtype=np.float32) * value
self.backup_value(value, up_to=up_to)
示例15
def stone_features(position):
# a bit easier to calculate it with axis 0 being the 16 board states,
# and then roll axis 0 to the end.
features = np.zeros([16, go.N, go.N], dtype=np.uint8)
num_deltas_avail = position.board_deltas.shape[0]
cumulative_deltas = np.cumsum(position.board_deltas, axis=0)
last_eight = np.tile(position.board, [8, 1, 1])
# apply deltas to compute previous board states
last_eight[1:num_deltas_avail + 1] -= cumulative_deltas
# if no more deltas are available, just repeat oldest board.
last_eight[num_deltas_avail +
1:] = last_eight[num_deltas_avail].reshape(1, go.N, go.N)
features[::2] = last_eight == position.to_play
features[1::2] = last_eight == -position.to_play
return np.rollaxis(features, 0, 3)
示例16
def make_tf_example(features, pi, value):
'''
Args:
features: [N, N, FEATURE_DIM] nparray of uint8
pi: [N * N + 1] nparray of float32
value: float
'''
return tf.train.Example(features=tf.train.Features(feature={
'x': tf.train.Feature(
bytes_list=tf.train.BytesList(
value=[features.tostring()])),
'pi': tf.train.Feature(
bytes_list=tf.train.BytesList(
value=[pi.tostring()])),
'outcome': tf.train.Feature(
float_list=tf.train.FloatList(
value=[value]))}))
# Write tf.Example to files
示例17
def batch_parse_tf_example(batch_size, example_batch):
'''
Args:
example_batch: a batch of tf.Example
Returns:
A tuple (feature_tensor, dict of output tensors)
'''
features = {
'x': tf.FixedLenFeature([], tf.string),
'pi': tf.FixedLenFeature([], tf.string),
'outcome': tf.FixedLenFeature([], tf.float32),
}
parsed = tf.parse_example(example_batch, features)
x = tf.decode_raw(parsed['x'], tf.uint8)
x = tf.cast(x, tf.float32)
x = tf.reshape(x, [batch_size, go.N, go.N,
features_lib.NEW_FEATURES_PLANES])
pi = tf.decode_raw(parsed['pi'], tf.float32)
pi = tf.reshape(pi, [batch_size, go.N * go.N + 1])
outcome = parsed['outcome']
outcome.set_shape([batch_size])
return (x, {'pi_tensor': pi, 'value_tensor': outcome})
示例18
def generate(model_num):
if model_num == 0:
new_name = 'bootstrap'
elif go.N == 19:
new_name = random.choice(NAMES)
else:
new_name = petname.generate()
full_name = "%06d-%s" % (model_num, new_name)
return full_name
示例19
def get_inference_input():
"""Set up placeholders for input features/labels.
Returns the feature, output tensors that get passed into model_fn."""
return (tf.placeholder(tf.float32,
[None, go.N, go.N, features.NEW_FEATURES_PLANES],
name='pos_tensor'),
{'pi_tensor': tf.placeholder(tf.float32, [None, go.N * go.N + 1]),
'value_tensor': tf.placeholder(tf.float32, [None])})
示例20
def apply_symmetry_pi(s, pi):
pi = np.copy(pi)
# rotate all moves except for the pass move at end
pi[:-1] = IMPLS[s](pi[:-1].reshape([go.N, go.N])).ravel()
return pi
示例21
def D_NOISE_ALPHA(): return 0.03 * 361 / (go.N ** 2)
示例22
def __repr__(self):
return "<MCTSNode move=%s, N=%s, to_play=%s>" % (
self.position.recent[-1:], self.N, self.position.to_play)
示例23
def child_U(self):
return (c_PUCT * math.sqrt(1 + self.N) *
self.child_prior / (1 + self.child_N))
示例24
def Q(self):
return self.W / (1 + self.N)
示例25
def N(self):
return self.parent.child_N[self.fmove]
示例26
def N(self, value):
self.parent.child_N[self.fmove] = value
示例27
def revert_visits(self, up_to):
"""Revert visit increments.
Sometimes, repeated calls to select_leaf return the same node.
This is rare and we're okay with the wasted computation to evaluate
the position multiple times by the dual_net. But select_leaf has the
side effect of incrementing visit counts. Since we want the value to
only count once for the repeatedly selected node, we also have to
revert the incremented visit counts.
"""
self.N -= 1
if self.parent is None or self is up_to:
return
self.parent.revert_visits(up_to)
示例28
def inject_noise(self):
dirch = np.random.dirichlet([D_NOISE_ALPHA()] * ((go.N * go.N) + 1))
self.child_prior = self.child_prior * 0.75 + dirch * 0.25
示例29
def most_visited_path(self):
node = self
output = []
while node.children:
next_kid = np.argmax(node.child_N)
node = node.children.get(next_kid)
if node is None:
output.append("GAME END")
break
output.append("%s (%d) ==> " % (coords.to_kgs(
coords.from_flat(node.fmove)),
node.N))
output.append("Q: {:.5f}\n".format(node.Q))
return ''.join(output)
示例30
def describe(self):
sort_order = list(range(go.N * go.N + 1))
sort_order.sort(key=lambda i: (
self.child_N[i], self.child_action_score[i]), reverse=True)
soft_n = self.child_N / sum(self.child_N)
p_delta = soft_n - self.child_prior
p_rel = p_delta / self.child_prior
# Dump out some statistics
output = []
output.append("{q:.4f}\n".format(q=self.Q))
output.append(self.most_visited_path())
output.append(
"move: action Q U P P-Dir N soft-N p-delta p-rel\n")
output.append("\n".join(["{!s:6}: {: .3f}, {: .3f}, {:.3f}, {:.3f}, {:.3f}, {:4d} {:.4f} {: .5f} {: .2f}".format(
coords.to_kgs(coords.from_flat(key)),
self.child_action_score[key],
self.child_Q[key],
self.child_U[key],
self.child_prior[key],
self.original_prior[key],
int(self.child_N[key]),
soft_n[key],
p_delta[key],
p_rel[key])
for key in sort_order][:15]))
return ''.join(output)