def configure_worker(options={}, **kwargs):
if 'queues' not in options:
return
if CORRESPONDING_QUEUE not in options['queues'].split(','):
return
print('### STARTING UP A NEAREST NEIGHBOR CONTEXT RECOMMENDER WORKER ###')
global recommender
# Setting logging low
from rdkit import RDLogger
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
try:
recommender = NNContextRecommender()
recommender.load_nn_model(model_path=gc.CONTEXT_REC[
'model_path'], info_path=gc.CONTEXT_REC['info_path'])
except Exception as e:
print(e)
print('Loaded context recommendation model')
print('### NEAREST NEIGHBOR CONTEXT RECOMMENDER STARTED UP ###')
def configure_worker(options={}, **kwargs):
if 'queues' not in options:
return
if CORRESPONDING_QUEUE not in options['queues'].split(','):
return
print('### STARTING UP A NEURAL NETWORK CONTEXT RECOMMENDER WORKER ###')
global recommender
# Setting logging low
from rdkit import RDLogger
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
try:
recommender = NeuralNetContextRecommender()
recommender.load()
except Exception as e:
print(e)
print('Loaded context recommendation model')
print('### NEURAL NETWORK CONTEXT RECOMMENDER STARTED UP ###')