Python源码示例:torch.utils._data_transforms_cifar10()

示例1
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))    
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例2
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))    
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例3
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例4
def build_cifar100(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 100, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)

    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    
    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例5
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size, args.autoaugment)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)

    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例6
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform)
    
    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train)) 
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例7
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))    
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例8
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例9
def build_cifar100(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 100, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)

    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    
    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例10
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)

    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例11
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()
  utils.load(model, args.model_path)

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  _, test_transform = utils._data_transforms_cifar10(args)
  test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

  test_queue = torch.utils.data.DataLoader(
      test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  model.drop_path_prob = args.drop_path_prob
  test_acc, test_obj = infer(test_queue, model, criterion)
  logging.info('test_acc %f', test_acc) 
示例12
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))    
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例13
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例14
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()
  utils.load(model, args.model_path)

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  _, test_transform = utils._data_transforms_cifar10(args)
  test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

  test_queue = torch.utils.data.DataLoader(
      test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  model.drop_path_prob = args.drop_path_prob
  test_acc, test_obj = infer(test_queue, model, criterion)
  logging.info('test_acc %f', test_acc) 
示例15
def get_train_val_loaders(self):
        if self.args.dataset == 'cifar10':
            train_transform, valid_transform = utils._data_transforms_cifar10(self.args)
            train_data = dset.CIFAR10(
                root=self.args.data, train=True, download=True, transform=train_transform)
            valid_data = dset.CIFAR10(
                root=self.args.data, train=False, download=True, transform=valid_transform)
        elif self.args.dataset == 'cifar100':
            train_transform, valid_transform = utils._data_transforms_cifar100(self.args)
            train_data = dset.CIFAR100(
                root=self.args.data, train=True, download=True, transform=train_transform)
            valid_data = dset.CIFAR100(
                root=self.args.data, train=False, download=True, transform=valid_transform)
        elif self.args.dataset == 'svhn':
            train_transform, valid_transform = utils._data_transforms_svhn(self.args)
            train_data = dset.SVHN(
                root=self.args.data, split='train', download=True, transform=train_transform)
            valid_data = dset.SVHN(
                root=self.args.data, split='test', download=True, transform=valid_transform)

        train_queue = torch.utils.data.DataLoader(
            train_data, batch_size=self.args.batch_size,
            shuffle=True, pin_memory=True, num_workers=2)

        valid_queue = torch.utils.data.DataLoader(
            valid_data, batch_size=self.args.batch_size,
            shuffle=False, pin_memory=True, num_workers=2)

        return train_queue, valid_queue, train_transform, valid_transform 
示例16
def get_train_val_loaders(self):
        if self.args.dataset == 'cifar10':
            train_transform, valid_transform = utils._data_transforms_cifar10(self.args)
            train_data = dset.CIFAR10(root=self.args.data, train=True, download=True, transform=train_transform)
        elif self.args.dataset == 'cifar100':
            train_transform, valid_transform = utils._data_transforms_cifar100(self.args)
            train_data = dset.CIFAR100(root=self.args.data, train=True, download=True, transform=train_transform)
        elif self.args.dataset == 'svhn':
            train_transform, valid_transform = utils._data_transforms_svhn(self.args)
            train_data = dset.SVHN(root=self.args.data, split='train', download=True, transform=train_transform)

        num_train = len(train_data)
        indices = list(range(num_train))
        split = int(np.floor(self.args.train_portion * num_train))

        train_queue = torch.utils.data.DataLoader(
            train_data, batch_size=self.args.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
            pin_memory=True, num_workers=2)

        valid_queue = torch.utils.data.DataLoader(
            train_data, batch_size=self.args.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
            pin_memory=True, num_workers=2)

        return train_queue, valid_queue, train_transform, valid_transform 
示例17
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()
  utils.load(model, args.model_path)

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  _, test_transform = utils._data_transforms_cifar10(args)
  test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

  test_queue = torch.utils.data.DataLoader(
      test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  model.drop_path_prob = args.drop_path_prob
  test_acc, test_obj = infer(test_queue, model, criterion)
  logging.info('test_acc %f', test_acc) 
示例18
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)
    
    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    
    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例19
def build_cifar100(model_state_dict, optimizer_state_dict, **kwargs):
    epoch = kwargs.pop('epoch')

    train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR100(root=args.data, train=False, download=True, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16)
    
    model = NASNetworkCIFAR(args, 100, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob,
                       args.use_aux_head, args.steps, args.arch)
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
    logging.info("multi adds = %fM", model.multi_adds / 1000000)
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)

    if torch.cuda.device_count() > 1:
        logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !")
        model = nn.DataParallel(model)
    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    
    optimizer = torch.optim.SGD(
        model.parameters(),
        args.lr_max,
        momentum=0.9,
        weight_decay=args.l2_reg,
    )
    
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例20
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()
  utils.load(model, args.model_path)

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()

  _, test_transform = utils._data_transforms_cifar10(args)
  test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform)

  test_queue = torch.utils.data.DataLoader(
      test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  model.drop_path_prob = args.drop_path_prob
  with torch.no_grad():
    test_acc, test_obj = infer(test_queue, model, criterion)
  logging.info('test_acc %f', test_acc) 
示例21
def main():
    if not torch.cuda.is_available():
        logging.info('no gpu device available')
        sys.exit(1)

    np.random.seed(args.seed)
    torch.cuda.set_device(args.gpu)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    torch.cuda.manual_seed(args.seed)
    logging.info('gpu device = %d' % args.gpu)
    logging.info("args = %s", args)

    genotype = eval("genotypes.%s" % args.arch)
    model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
    model = model.cuda()

    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()
    optimizer = torch.optim.SGD(
        model.parameters(),
        args.learning_rate,
        momentum=args.momentum,
        weight_decay=args.weight_decay
    )

    train_transform, valid_transform = utils._data_transforms_cifar10(args)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2)

    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))

    for epoch in range(args.epochs):
        scheduler.step()
        logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
        model.drop_path_prob = args.drop_path_prob * epoch / args.epochs

        train_acc, train_obj = train(train_queue, model, criterion, optimizer)
        logging.info('train_acc %f', train_acc)

        valid_acc, valid_obj = infer(valid_queue, model, criterion)
        logging.info('valid_acc %f', valid_acc)

        utils.save(model, os.path.join(args.save, 'weights.pt')) 
示例22
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()
  optimizer = torch.optim.SGD(
    model.parameters(),
    args.learning_rate,
    momentum=args.momentum,
    weight_decay=args.weight_decay
  )

  train_transform, valid_transform = utils._data_transforms_cifar10(args)
  train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
  valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

  train_queue = torch.utils.data.DataLoader(
    train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2)

  valid_queue = torch.utils.data.DataLoader(
    valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))

  for epoch in range(args.epochs):
    scheduler.step()
    logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
    model.drop_path_prob = args.drop_path_prob * epoch / args.epochs

    train_acc, train_obj = train(train_queue, model, criterion, optimizer)
    logging.info('train_acc %f', train_acc)

    valid_acc, valid_obj = infer(valid_queue, model, criterion)
    logging.info('valid_acc %f', valid_acc)

    utils.save(model, os.path.join(args.save, 'weights.pt')) 
示例23
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform)
    
    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train)) 
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)
    
    model = NASWSNetworkCIFAR(10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob,
                       args.child_use_aux_head, args.steps)

    model = model.cuda()

    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )

    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例24
def initialize_run(self, sub_dir_path=None):
        args = self.args
        utils = project_utils
        if not self.args.continue_train:
            self.sub_directory_path = 'WeightSharingNasBenchNetRandom-{}_SEED_{}'.format(self.args.save, self.args.seed)
            self.exp_dir = os.path.join(self.args.main_path, self.sub_directory_path)
            utils.create_exp_dir(self.exp_dir)
        if self.args.visualize:
            self.viz_dir_path = utils.create_viz_dir(self.exp_dir)

        if self.args.tensorboard:
            self.tb_dir = self.exp_dir
            tboard_dir = os.path.join(self.args.tboard_dir, self.sub_directory_path)
            self.writer = SummaryWriter(tboard_dir)

        if self.args.debug:
            torch.autograd.set_detect_anomaly(True)

        # Set logger.
        self.logger = utils.get_logger(
            "train_search",
            file_handler=utils.get_file_handler(os.path.join(self.exp_dir, 'log.txt')),
            level=logging.INFO if not args.debug else logging.DEBUG
        )
        logging.info(f"setting random seed as {args.seed}")
        utils.torch_random_seed(args.seed)
        logging.info('gpu number = %d' % args.gpus)
        logging.info("args = %s", args)

        criterion = nn.CrossEntropyLoss().cuda()
        eval_criterion = nn.CrossEntropyLoss().cuda()
        self.eval_loss = eval_criterion

        train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_length if args.cutout else None)
        train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
        valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform)
        test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

        num_train = len(train_data)
        indices = list(range(num_train))
        split = int(np.floor(args.nao_search_config.ratio * num_train))

        train_queue = torch.utils.data.DataLoader(
            train_data, batch_size=args.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
            pin_memory=True, num_workers=2)

        valid_queue = torch.utils.data.DataLoader(
            valid_data, batch_size=args.nao_search_config.child_eval_batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
            pin_memory=True, num_workers=2)

        test_queue = torch.utils.data.DataLoader(
            test_data, batch_size=args.evaluate_batch_size,
            shuffle=False, pin_memory=True, num_workers=8)

        return train_queue, valid_queue, test_queue, criterion, eval_criterion 
示例25
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()
  optimizer = torch.optim.SGD(
      model.parameters(),
      args.learning_rate,
      momentum=args.momentum,
      weight_decay=args.weight_decay
      )

  train_transform, valid_transform = utils._data_transforms_cifar10(args)
  train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
  valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

  train_queue = torch.utils.data.DataLoader(
      train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2)

  valid_queue = torch.utils.data.DataLoader(
      valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))

  for epoch in range(args.epochs):
    scheduler.step()
    logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
    model.drop_path_prob = args.drop_path_prob * epoch / args.epochs

    train_acc, train_obj = train(train_queue, model, criterion, optimizer)
    logging.info('train_acc %f', train_acc)

    valid_acc, valid_obj = infer(valid_queue, model, criterion)
    logging.info('valid_acc %f', valid_acc)

    utils.save(model, os.path.join(args.save, 'weights.pt')) 
示例26
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size)
    train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)

    model = NASWSNetworkCIFAR(10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob,
                              args.child_drop_path_keep_prob,
                              args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例27
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs):
    epoch = kwargs.pop('epoch')
    ratio = kwargs.pop('ratio')
    train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size)
    train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform)
    valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform)

    num_train = len(train_data)
    assert num_train == len(valid_data)
    indices = list(range(num_train))
    split = int(np.floor(ratio * num_train))
    np.random.shuffle(indices)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.child_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        pin_memory=True, num_workers=16)
    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.child_eval_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
        pin_memory=True, num_workers=16)

    model = NASWSNetworkCIFAR(100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob,
                              args.child_drop_path_keep_prob,
                              args.child_use_aux_head, args.steps)
    model = model.cuda()
    train_criterion = nn.CrossEntropyLoss().cuda()
    eval_criterion = nn.CrossEntropyLoss().cuda()
    logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

    optimizer = torch.optim.SGD(
        model.parameters(),
        args.child_lr_max,
        momentum=0.9,
        weight_decay=args.child_l2_reg,
    )
    if model_state_dict is not None:
        model.load_state_dict(model_state_dict)
    if optimizer_state_dict is not None:
        optimizer.load_state_dict(optimizer_state_dict)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch)
    return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler 
示例28
def main():
  if not torch.cuda.is_available():
    logging.info('no gpu device available')
    sys.exit(1)

  np.random.seed(args.seed)
  torch.cuda.set_device(args.gpu)
  cudnn.benchmark = True
  torch.manual_seed(args.seed)
  cudnn.enabled=True
  torch.cuda.manual_seed(args.seed)
  logging.info('gpu device = %d' % args.gpu)
  logging.info("args = %s", args)

  genotype = eval("genotypes.%s" % args.arch)
  model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
  model = model.cuda()

  logging.info("param size = %fMB", utils.count_parameters_in_MB(model))

  criterion = nn.CrossEntropyLoss()
  criterion = criterion.cuda()
  optimizer = torch.optim.SGD(
      model.parameters(),
      args.learning_rate,
      momentum=args.momentum,
      weight_decay=args.weight_decay
      )

  train_transform, valid_transform = utils._data_transforms_cifar10(args)
  train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
  valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform)

  train_queue = torch.utils.data.DataLoader(
      train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2)

  valid_queue = torch.utils.data.DataLoader(
      valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2)

  scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))

  best_val_acc = 0.
  for epoch in range(args.epochs):
    scheduler.step()
    logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
    model.drop_path_prob = args.drop_path_prob * epoch / args.epochs

    train_acc, train_obj = train(train_queue, model, criterion, optimizer)
    logging.info('train_acc %f', train_acc)

    with torch.no_grad():
      valid_acc, valid_obj = infer(valid_queue, model, criterion)
      if valid_acc > best_val_acc:
        best_val_acc = valid_acc
        utils.save(model, os.path.join(args.save, 'best_weights.pt'))
      logging.info('valid_acc %f\tbest_val_acc %f', valid_acc, best_val_acc)

    utils.save(model, os.path.join(args.save, 'weights.pt'))